[C#] Bgr24彩色位图转为Gray8灰度位图的跨平台SIMD硬件加速向量算法

  • [C#] Bgr24彩色位图转为Gray8灰度位图的跨平台SIMD硬件加速向量算法已关闭评论
  • 30 次浏览
  • A+
所属分类:.NET技术
摘要

将彩色位图转为灰度位图,是图像处理的常用算法。本文将介绍 Bgr24彩色位图转为Gray8灰度位图的算法,除了会给出标量算法外,还会给出向量算法。且这些算法是跨平台的,同一份源代码,能在 X86及Arm架构上运行,且均享有SIMD硬件加速。

将彩色位图转为灰度位图,是图像处理的常用算法。本文将介绍 Bgr24彩色位图转为Gray8灰度位图的算法,除了会给出标量算法外,还会给出向量算法。且这些算法是跨平台的,同一份源代码,能在 X86及Arm架构上运行,且均享有SIMD硬件加速。

一、标量算法

1.1 算法实现

对于彩色转灰度,由于人眼对红绿蓝三种颜色的敏感程度不同,在灰度转换时,每个颜色分配的权重也是不同的。有一个很著名的心理学公式:

Gray = R*0.299 + G*0.587 + B*0.114

该公式含有浮点数,而浮点数运算一般比较慢。
于是在具体实现时,需要做一定优化。可以将小数转为定点整数,这样便能将除法转为移位。整数计算比浮点型快,移位运算和加减法比乘除法快,于是取得了比较好的效果。
但是这种方法也会带来一定的精度损失,我们可以根据实际情况选择定点整数的精度位数。
这里我们使用16位精度,源代码如下。

public static unsafe void ScalarDo(BitmapData src, BitmapData dst) {     const int cbPixel = 3; // Bgr24     const int shiftPoint = 16;     const int mulPoint = 1 << shiftPoint; // 0x10000     const int mulRed = (int)(0.299 * mulPoint + 0.5); // 19595     const int mulGreen = (int)(0.587 * mulPoint + 0.5); // 38470     const int mulBlue = mulPoint - mulRed - mulGreen; // 7471     int width = src.Width;     int height = src.Height;     int strideSrc = src.Stride;     int strideDst = dst.Stride;     byte* pRow = (byte*)src.Scan0.ToPointer();     byte* qRow = (byte*)dst.Scan0.ToPointer();     for (int i = 0; i < height; i++) {         byte* p = pRow;         byte* q = qRow;         for (int j = 0; j < width; j++) {             *q = (byte)((p[2] * mulRed + p[1] * mulGreen + p[0] * mulBlue) >> shiftPoint);             p += cbPixel; // Bgr24             q += 1; // Gray8         }         pRow += strideSrc;         qRow += strideDst;     } } 

1.2 基准测试代码

使用 BenchmarkDotNet 进行基准测试。
可以实现分配好数据。源代码如下。

private static readonly Random _random = new Random(1); private BitmapData _sourceBitmapData = null; private BitmapData _destinationBitmapData = null; private BitmapData _expectedBitmapData = null;  [Params(1024, 2048, 4096)] public int Width { get; set; } public int Height { get; set; }  ~Bgr24ToGrayBgr24Benchmark() {     Dispose(false); }  public void Dispose() {     Dispose(true);     GC.SuppressFinalize(this); }  private void Dispose(bool disposing) {     if (_disposed) return;     _disposed = true;     if (disposing) {         Cleanup();     } }  private BitmapData AllocBitmapData(int width, int height, PixelFormat format) {     const int strideAlign = 4;     if (width <= 0) throw new ArgumentOutOfRangeException($"The width({width}) need > 0!");     if (height <= 0) throw new ArgumentOutOfRangeException($"The width({height}) need > 0!");     int stride = 0;     switch (format) {         case PixelFormat.Format8bppIndexed:             stride = width * 1;             break;         case PixelFormat.Format24bppRgb:             stride = width * 3;             break;     }     if (stride <= 0) throw new ArgumentOutOfRangeException($"Invalid pixel format({format})!");     if (0 != (stride % strideAlign)) {         stride = stride - (stride % strideAlign) + strideAlign;     }     BitmapData bitmapData = new BitmapData();     bitmapData.Width = width;     bitmapData.Height = height;     bitmapData.PixelFormat = format;     bitmapData.Stride = stride;     bitmapData.Scan0 = Marshal.AllocHGlobal(stride * height);     return bitmapData; }  private void FreeBitmapData(BitmapData bitmapData) {     if (null == bitmapData) return;     if (IntPtr.Zero == bitmapData.Scan0) return;     Marshal.FreeHGlobal(bitmapData.Scan0);     bitmapData.Scan0 = IntPtr.Zero; }  [GlobalCleanup] public void Cleanup() {     FreeBitmapData(_sourceBitmapData); _sourceBitmapData = null;     FreeBitmapData(_destinationBitmapData); _destinationBitmapData = null;     FreeBitmapData(_expectedBitmapData); _expectedBitmapData = null; }  [GlobalSetup] public void Setup() {     Height = Width;     // Create.     Cleanup();     _sourceBitmapData = AllocBitmapData(Width, Height, PixelFormat.Format24bppRgb);     _destinationBitmapData = AllocBitmapData(Width, Height, PixelFormat.Format8bppIndexed);     _expectedBitmapData = AllocBitmapData(Width, Height, PixelFormat.Format8bppIndexed);     RandomFillBitmapData(_sourceBitmapData, _random); } 

使用这些已分配好的数据,能很容易写出ScalarDo 的基准测试代码。

[Benchmark(Baseline = true)] public void Scalar() {     ScalarDo(_sourceBitmapData, _destinationBitmapData); } 

二、向量算法

2.1 算法思路

对于24位转8位灰度,可以使用这种办法: 每次从源位图读取3个向量,进行3-元素组的解交织运算,得到 R,G,B 平面数据。随后使用向量化的乘法与加法,来计算灰度值。结果是存储了灰度值的1个向量,可以将它存储到目标位图。
例如 Sse指令集使用的是128位向量,此时1个向量为16字节。每次从源位图读取3个向量,就是读取了48字节,即16个RGB像素。最后将1个向量存储到目标位图,就是写入了16字节,即16个灰度像素。

对于3-元素组的解交织,可以使用 shuffle 类别的指令来实现。例如对于X86架构的 128位向量,可以使用 SSSE3 的 _mm_shuffle_epi8 指令,它对应 NET 中的 Ssse3.Shuffle 方法。源代码如下。

static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part0 = Vector128.Create((sbyte)0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14, -1, -1, -1, -1, -1).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 4, 7, 10, 13).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part0 = Vector128.Create((sbyte)1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part0 = Vector128.Create((sbyte)2, 5, 8, 11, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, 1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1).AsByte(); static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15).AsByte();  public static Vector128<byte> YGroup3Unzip(Vector128<byte> data0, Vector128<byte> data1, Vector128<byte> data2, out Vector128<byte> y, out Vector128<byte> z) {     var f0A = YGroup3Unzip_Shuffle_Byte_X_Part0;     var f0B = YGroup3Unzip_Shuffle_Byte_X_Part1;     var f0C = YGroup3Unzip_Shuffle_Byte_X_Part2;     var f1A = YGroup3Unzip_Shuffle_Byte_Y_Part0;     var f1B = YGroup3Unzip_Shuffle_Byte_Y_Part1;     var f1C = YGroup3Unzip_Shuffle_Byte_Y_Part2;     var f2A = YGroup3Unzip_Shuffle_Byte_Z_Part0;     var f2B = YGroup3Unzip_Shuffle_Byte_Z_Part1;     var f2C = YGroup3Unzip_Shuffle_Byte_Z_Part2;     var rt0 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f0A), Ssse3.Shuffle(data1, f0B)), Ssse3.Shuffle(data2, f0C));     var rt1 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f1A), Ssse3.Shuffle(data1, f1B)), Ssse3.Shuffle(data2, f1C));     var rt2 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f2A), Ssse3.Shuffle(data1, f2B)), Ssse3.Shuffle(data2, f2C));     y = rt1;     z = rt2;     return rt0; } 

为了使跨平台编写向量算法更方便,我开发了 VectorTraits 库,已经集成了上述算法。该库提供了“Vectors.YGroup3Unzip”方法。该方法能够跨平台,它会使用各个平台的shuffle指令。

  • X86 256-bit: Use _mm256_shuffle_epi8 and other instructions.
  • Arm: Use vqvtbl1q_u8 instructions.
  • Wasm: Use i8x16.swizzle instructions.

2.2 算法实现

有了“Vectors.YGroup3Unzip”方法后,便能方便的编写24位转8位灰度的算法了。灰度系数有8位精度,于是需要将 8位数据变宽为16位后,再来计算乘法与加法。最后再将 16位数据,变窄为8位。源代码如下。

public static unsafe void UseVectorsDoBatch(byte* pSrc, int strideSrc, int width, int height, byte* pDst, int strideDst) {     const int cbPixel = 3; // Bgr24     const int shiftPoint = 8;     const int mulPoint = 1 << shiftPoint; // 0x100     const ushort mulRed = (ushort)(0.299 * mulPoint + 0.5); // 77     const ushort mulGreen = (ushort)(0.587 * mulPoint + 0.5); // 150     const ushort mulBlue = mulPoint - mulRed - mulGreen; // 29     Vector<ushort> vmulRed = new Vector<ushort>(mulRed);     Vector<ushort> vmulGreen = new Vector<ushort>(mulGreen);     Vector<ushort> vmulBlue = new Vector<ushort>(mulBlue);     int vectorWidth = Vector<byte>.Count;     int maxX = width - vectorWidth;     byte* pRow = pSrc;     byte* qRow = pDst;     for (int i = 0; i < height; i++) {         Vector<byte>* pLast = (Vector<byte>*)(pRow + maxX * cbPixel);         Vector<byte>* qLast = (Vector<byte>*)(qRow + maxX * 1);         Vector<byte>* p = (Vector<byte>*)pRow;         Vector<byte>* q = (Vector<byte>*)qRow;         for (; ; ) {             Vector<byte> r, g, b, gray;             Vector<ushort> wr0, wr1, wg0, wg1, wb0, wb1;             // Load.             b = Vectors.YGroup3Unzip(p[0], p[1], p[2], out g, out r);             // widen(r) * mulRed + widen(g) * mulGreen + widen(b) * mulBlue             Vector.Widen(r, out wr0, out wr1);             Vector.Widen(g, out wg0, out wg1);             Vector.Widen(b, out wb0, out wb1);             wr0 = Vectors.Multiply(wr0, vmulRed);             wr1 = Vectors.Multiply(wr1, vmulRed);             wg0 = Vectors.Multiply(wg0, vmulGreen);             wg1 = Vectors.Multiply(wg1, vmulGreen);             wb0 = Vectors.Multiply(wb0, vmulBlue);             wb1 = Vectors.Multiply(wb1, vmulBlue);             wr0 = Vector.Add(wr0, wg0);             wr1 = Vector.Add(wr1, wg1);             wr0 = Vector.Add(wr0, wb0);             wr1 = Vector.Add(wr1, wb1);             // Shift right and narrow.             wr0 = Vectors.ShiftRightLogical_Const(wr0, shiftPoint);             wr1 = Vectors.ShiftRightLogical_Const(wr1, shiftPoint);             gray = Vector.Narrow(wr0, wr1);             // Store.             *q = gray;             // Next.             if (p >= pLast) break;             p += cbPixel;             ++q;             if (p > pLast) p = pLast; // The last block is also use vector.             if (q > qLast) q = qLast;         }         pRow += strideSrc;         qRow += strideDst;     } } 

上面源代码中的“Vectors.ShiftRightLogical_Const”,是VectorTraits 库提供的方法。它能替代 NET 7.0 新增的 Vector.ShiftRightLogical 方法,使早期版本的 NET 也能使用逻辑右移位。
“Vectors.Multiply”也是VectorTraits 库提供的方法。它能避免无符号类型有时没有硬件加速的问题。

2.3 基准测试代码

[Benchmark] public void UseVectors() {     UseVectorsDo(_sourceBitmapData, _destinationBitmapData, false); }  [Benchmark] public void UseVectorsParallel() {     UseVectorsDo(_sourceBitmapData, _destinationBitmapData, true); }  public static unsafe void UseVectorsDo(BitmapData src, BitmapData dst, bool useParallel = false) {     int vectorWidth = Vector<byte>.Count;     int width = src.Width;     int height = src.Height;     if (width <= vectorWidth) {         ScalarDo(src, dst);         return;     }     int strideSrc = src.Stride;     int strideDst = dst.Stride;     byte* pSrc = (byte*)src.Scan0.ToPointer();     byte* pDst = (byte*)dst.Scan0.ToPointer();     int processorCount = Environment.ProcessorCount;     int batchSize = height / (processorCount * 2);     bool allowParallel = useParallel && (batchSize > 0) && (processorCount > 1);     if (allowParallel) {         int batchCount = (height + batchSize - 1) / batchSize; // ceil((double)length / batchSize)         Parallel.For(0, batchCount, i => {             int start = batchSize * i;             int len = batchSize;             if (start + len > height) len = height - start;             byte* pSrc2 = pSrc + start * strideSrc;             byte* pDst2 = pDst + start * strideDst;             UseVectorsDoBatch(pSrc2, strideSrc, width, len, pDst2, strideDst);         });     } else {         UseVectorsDoBatch(pSrc, strideSrc, width, height, pDst, strideDst);     } } 

完整源码在 Bgr24ToGray8Benchmark.cs

随后为该算法编写基准测试代码。

三、基准测试结果

3.1 X86 架构

X86架构下的基准测试结果如下。

BenchmarkDotNet v0.14.0, Windows 11 (10.0.22631.4460/23H2/2023Update/SunValley3) AMD Ryzen 7 7840H w/ Radeon 780M Graphics, 1 CPU, 16 logical and 8 physical cores .NET SDK 8.0.403   [Host]     : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI   DefaultJob : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI   | Method               | Width | Mean         | Error      | StdDev     | Ratio | RatioSD | Code Size | |--------------------- |------ |-------------:|-----------:|-----------:|------:|--------:|----------:| | Scalar               | 1024  |  1,028.55 us |  12.545 us |  11.735 us |  1.00 |    0.02 |     152 B | | UseVectors           | 1024  |     94.06 us |   0.606 us |   0.537 us |  0.09 |    0.00 |        NA | | UseVectorsParallel   | 1024  |     24.98 us |   0.390 us |   0.365 us |  0.02 |    0.00 |        NA | | PeterParallelScalar  | 1024  |    216.47 us |   1.719 us |   1.524 us |  0.21 |    0.00 |        NA | |                      |       |              |            |            |       |         |           | | Scalar               | 2048  |  4,092.26 us |  21.098 us |  18.703 us |  1.00 |    0.01 |     152 B | | UseVectors           | 2048  |    507.70 us |   9.626 us |  11.459 us |  0.12 |    0.00 |        NA | | UseVectorsParallel   | 2048  |    118.98 us |   1.025 us |   0.959 us |  0.03 |    0.00 |        NA | | PeterParallelScalar  | 2048  |    803.30 us |   9.226 us |   8.630 us |  0.20 |    0.00 |        NA | |                      |       |              |            |            |       |         |           | | Scalar               | 4096  | 16,391.12 us | 121.643 us | 113.785 us |  1.00 |    0.01 |     152 B | | UseVectors           | 4096  |  2,472.16 us |  32.452 us |  30.356 us |  0.15 |    0.00 |        NA | | UseVectorsParallel   | 4096  |  2,034.85 us |  33.074 us |  30.937 us |  0.12 |    0.00 |        NA | | PeterParallelScalar  | 4096  |  3,139.85 us |  32.657 us |  27.270 us |  0.19 |    0.00 |        NA | 
  • Scalar: 标量算法。
  • UseVectors: 矢量算法。
  • UseVectorsParallel: 并发的矢量算法。

3.2 Arm 架构

同样的源代码可以在 Arm 架构上运行。基准测试结果如下。

BenchmarkDotNet v0.14.0, macOS Sequoia 15.0.1 (24A348) [Darwin 24.0.0] Apple M2, 1 CPU, 8 logical and 8 physical cores .NET SDK 8.0.204   [Host]     : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD [AttachedDebugger]   DefaultJob : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD   | Method               | Width | Mean         | Error     | StdDev    | Ratio | RatioSD | |--------------------- |------ |-------------:|----------:|----------:|------:|--------:| | Scalar               | 1024  |    635.31 us |  0.537 us |  0.448 us |  1.00 |    0.00 | | UseVectors           | 1024  |    127.04 us |  0.567 us |  0.474 us |  0.20 |    0.00 | | UseVectorsParallel   | 1024  |     46.37 us |  0.336 us |  0.314 us |  0.07 |    0.00 | | PeterParallelScalar  | 1024  |    202.19 us |  1.025 us |  0.959 us |  0.32 |    0.00 | |                      |       |              |           |           |       |         | | Scalar               | 2048  |  2,625.64 us |  1.795 us |  1.402 us |  1.00 |    0.00 | | UseVectors           | 2048  |    521.40 us |  0.301 us |  0.282 us |  0.20 |    0.00 | | UseVectorsParallel   | 2048  |    152.11 us |  3.548 us | 10.064 us |  0.06 |    0.00 | | PeterParallelScalar  | 2048  |    711.00 us |  1.806 us |  1.601 us |  0.27 |    0.00 | |                      |       |              |           |           |       |         | | Scalar               | 4096  | 10,457.09 us |  5.697 us |  5.051 us |  1.00 |    0.00 | | UseVectors           | 4096  |  2,058.16 us |  4.110 us |  3.643 us |  0.20 |    0.00 | | UseVectorsParallel   | 4096  |  1,152.15 us | 21.134 us | 21.703 us |  0.11 |    0.00 | | PeterParallelScalar  | 4096  |  2,897.94 us | 56.893 us | 91.871 us |  0.28 |    0.01 | 

附录